Designing and redesigning international manufacturing networks

Jan Olhager, Professor, Lund University, Sweden

Agenda

Designing international manufacturing networks

- At what level should we look?
- How can we map networks at an appropriate level?
- Are there generic network structures?

<u>Re</u>designing international manufacturing networks

- What happens in a network when plant roles and responsibilities change?
- How does offshoring and backshoring impact the network balance?

Concluding remarks

IMN at the <u>Company</u> level

IMN at the <u>Business Area</u> level

IMN at the **Product Group** level

IMN for one specific Product Group

Network mapping model – Product Group level

P, SC, D = ...

Competence Bundles

- Development (D)
 - Product improvement
 - New product technologies
 - New process technologies
- Supply Chain (SC)
 - Logistics
 - Procurement
 - Supplier development
- Production (P)
 - Production
 - Technical maintenance
 - Process improvement

Plant Types

Research on Product Group IMN design

- 5 companies
- 20 product groups
- 1-8 plants involved in a product group network
- Plant operations:
 - component plant
 - assembly plant
 - "integrated plant" = component mfg + assembly

(Source: Olhager & Feldmann, 2018, "A taxonomy of international manufacturing networks", PP&C)

20 Product Group networks

	Company 1	Company 2	Company 3	Company 4	Company 5
# Networks in study	4	5	4	5	2
# Plants in networks (range)	3-8	3-6	4-5	1-7	2-3
Total # plants involved in these networks	13	10	12	11	3
# Plants in Europe	5	4	6	6	2
# Plants in Americas	2	3	2	2	1
# Plants in Asia	6	3	4	3	0

(Source: Olhager & Feldmann, 2018, "A taxonomy of international manufacturing networks", PP&C)

Data collection

Decision category	Measurement	
Factory characteristics	Factory role; Site competences and responsibilities (production, supply chain, and development); Capacity; Size; Specialisation; Production process type; Proprietary vs. standard equipment; Automation level	
Geographical dispersion	Location of factories; Links between factories	
Horizontal coordination	Coordination mechanisms between production, purchasing, R&D, and product and process development.	
Vertical coordination	Number of successive stages in the internal network; Make/buy decisions; Location and characteristics of strategic suppliers	

Four network types

Assembly plants

(Source: Olhager & Feldmann, 2018, "A taxonomy of international manufacturing networks", PP&C)

Managerial challenges

Assembly plants

		One	Many	
Component plants	One	Degree of stan- dardization across sub-networks, Distribution of R&D responsibilities Linear	Location of new assembly factories (for capacity and/or new markets) Divergent	
		Convergent	Mixed	
	Many	R&D coordination, Material flow synchronization	Balancing the network through expansion, consolidation and relocations	

(Source: Olhager & Feldmann, 2018, "A taxonomy of international manufacturing networks", PP&C)

Agenda

Designing international manufacturing networks

- At what level should we look?
- How can we map networks at an appropriate level?
- Are there generic network structures?

<u>Re</u>designing international manufacturing networks

- What happens in a network when plant roles and responsibilities change?
- How does offshoring and backshoring impact the network balance?

Concluding remarks

Manufacturing location and relocation

Case example

Background: Management of a MNC found it increasingly difficult to supply US customers from Europe

Action: Supply US from China, by adding competencies and responsibilities to the China plant

(Source: Feldmann, Olhager, Fleet, Shi, 2013, "Linking networks and plant roles: the impact of changing a plant role", IJPR)

"Sub-network": <u>Small</u> products in the product group

Before ...

After ...

"Sub-network": Large products in the product group

Before ...

After

UNIVERSITY

Component plant Assembly plant

Model for mapping global responsibilities and illustrating plant role changes

LUND UNIVERSITY

(Source: Feldmann, Olhager, Fleet, Shi, 2013, "Linking networks and plant roles: the impact of changing a plant role", IJPR)

- ... changing the *plant role* of one plant affects the *network balance*
- ... plant role changes cannot be taken in isolation, but are *network decisions*
- ... from the Swedish perspective, the plant role change was a case of offshoring
- ... what about *backshoring*?
 - i.e. bring manufacturing back to Sweden

Survey on manufacturing relocation from and to Sweden between 2010-2015

- Data collection: September-October 2015
- Targets: All Swedish plants with more than 50 employees
 - 1637 plants
 - Industry code (SIC) 10-33
- Responses: 373
 - 22.8 % response rate
- Survey design
 - Unit of analysis: the plant
 - 229 items questions per respondent
 - Same set of questions for offshoring and backshoring

[Source: (1) Johansson & Olhager, 2018, Manufacturing relocation through offshoring and backshoring: the case of Sweden, *JMTM*; (2) Johansson & Olhager, 2018, Comparing offshoring and backshoring: The role of manufacturing site location factors and their impact on post-relocation performance, *IJPE*, and works in progress]

Key results

- Still more offshoring than backshoring, approximately 1:0.6
 - "better" ratio in Sweden than in other countries! But still a net outflow!
- All industries off- and backshore
 - Low-tech < Medium-low tech < Medium-high tech & High-tech
- All plant sizes off- and backshore
 - Small plants move less, while large both off- and backshore
- Plants in large networks move more frequently
 - both internally and externally
- Distinctly different drivers for off- and backshoring
 - One driver for offshoring = labour cost
 - Many drivers for backshoring!

To where & From where?

Relocations and innovations at the focal plant

To what extent are you pursuing manufacturing related innovations? (Scale: 1 = Not at all; 2 = Small extent, 3 = Moderate extent; 4 = Large extent; 5 = Very large extent)

Type of innovation	Offshorers	Bi-directional movers	Backshorers	Non-movers
N =	82	51	48	192
Digitalization	2.79 ^d	2.81 ^e	3.28 ^{c,d,e}	2.82 ^c
New high-tech materials	2.37	2.56	2.66 ^c	2.27 ^c
New process technologies	2.55 ^{c,d}	2.49 ^b	3.09 ^{a,b,d}	2.21 ^{a,c}
Automation & robotization	3.17°	3.23	3.64 ^c	3.31

a: difference is significant at the 0.001 level; b: difference is significant at the 0.01 level; c,d,e: difference is significant at the 0.05 level.

Concluding remarks

- All practitioners strive for a balanced manufacturing networks!
- Who should be doing what, where, with how much capacity, and for which product group?
 - Who = Rightsourcing
 - What = Component mfg and/or assembly (+R&D)
 - Where = Rightshoring
 - How much capacity = Rightsizing (wrt investments and innovations)
- A change in any of these dimensions affects the balance of the network!
- Thus, all dimensions should be considered simultaneously!

